The Axicon

Proteep Mallik OPTI 696bx 12/7/05

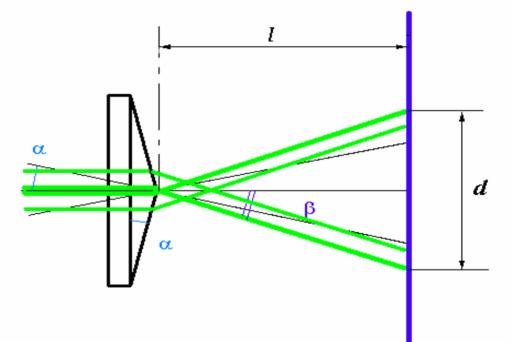
Outline

What is an axicon?

□ Its history

Its many uses

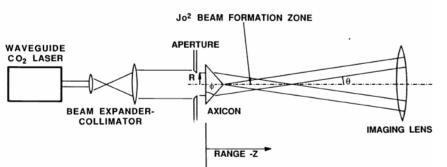
- Optical alignment
- Generation of diffraction free beams
- Corneal surgery
- □ OCT
- □ Atom traps
- Acoustic testing
- ... the list is endless!
- Modeling an axicon- ZEMAX

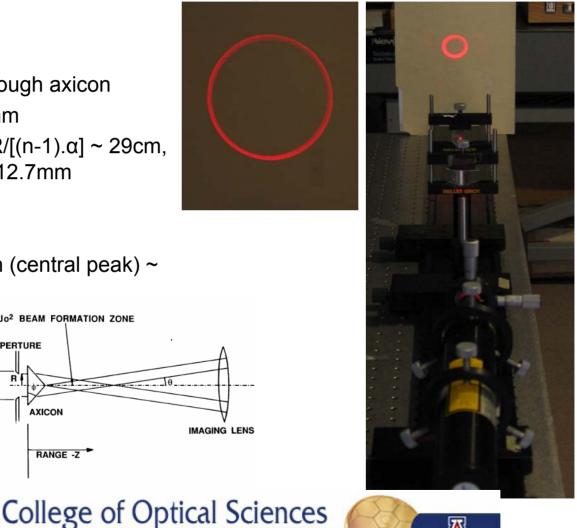

What is an Axicon? -History

- Term coined by J.H. McLoed in 1954
- Greek: "axis image"
- A point imaged onto a line segment
 - Pinhole camera
 - Poisson spot/Arago spot

What is an Axicon?

- Many definitions
- •Conical lens or rotationally symmetric prism
- •Cone angle = $180^{\circ} 2\alpha$
- Produces a line focus
- •Projects a ring 'spot'





Optical Alignment

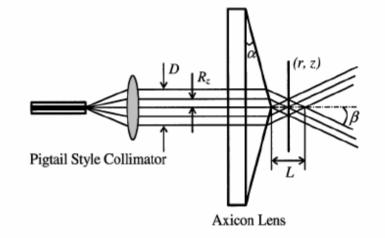
THE UNIVERSITY OF ARIZONA

- Collimated light through axicon
- Axicon dia = 25.4mm
- Depth of focus = $R/[(n-1).\alpha] \sim 29cm$, for $\alpha = 5^0$ and R = 12.7mm
- Diameter of ring,
 - $d = 2.1.tan [(n-1).\alpha]$
- Line segment width (central peak) ~ λ/R

Diffraction Free Beam

•Irradiance behind axicon given by:

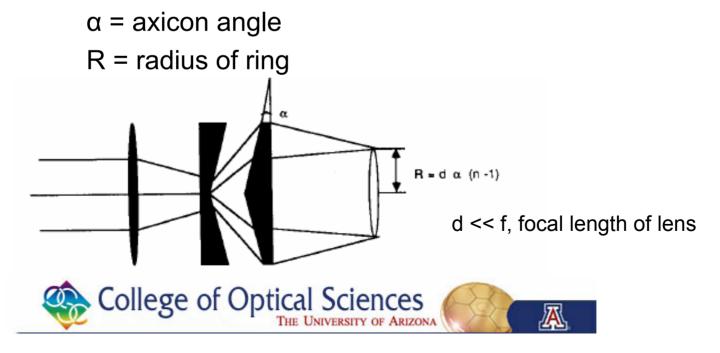
$$egin{aligned} I(r,z) &= E^2(R_z)R_z\,rac{2\pi k\,\sineta}{\cos^2eta}\,J_0{}^2(kr\,\sineta),\ R &\leq D/2, \qquad z \leq L \end{aligned}$$


where, r = radial coordinate on observation plane

 J_0 is a zero order Bessel function

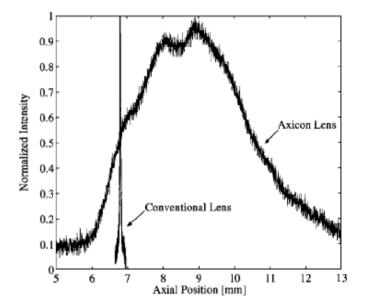
E is the energy of the beam at R_z

- $\bullet J_0$ is a function of transverse coordinates
- •Remains unchanged for z <= L
- •Used where long interaction lengths are needed
 - atom traps, Compton scattering etc.



Corneal Surgery

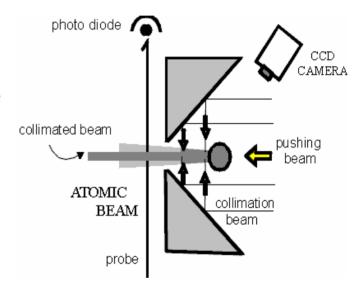
Qiushi Ren, Reginald Birngruber, IEEE Journal of Quantum Electronics, Vol 26, No 12, 1990


- Uses negative and positive axicons to change diameter of ring for ablating corneal material
- Diameter of ring directly controlled by separation of axicons
- $R = d.\alpha.(n-1)$, d = axicon separation

Optical Coherence Tomography

Zhihua Ding et al, Optics Letters, Vol 27, No 4, 2002

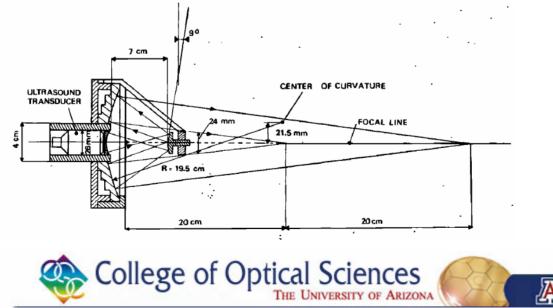
- •Focus depth increased w.r.t. conventional lens
- •Better than 10µm lateral resolution over 6mm axial position
- •Comparable Gaussian beam has axial range of only 0.25mm
- •Disadvantage: less light at focus point



Atom Traps

Ki-Hwan Kim et al, Technical Digest- Intl. Quantum Electronics Conference, Vol 7, 1998

- •Axicon mirror with hole in the middle
- •Pushing beam pushes atoms towards hole
- •Counter-propagating beam through hole
- •Turning counter-propagating beam on/off
- •Creates pulsed atom beam through hole

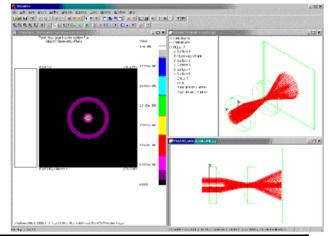


Acoustic Testing

C.B. Burckhardt et al, J. Acoustical Soc. Of Am., Vol 54, No 6, 1973

- •Transducer creates ultrasonic beam
- •Focused by plexiglass lens, incident on a conical mirror
- •Divergent beam incident on large axicon (cone + sphere)
- •Axicon focuses acoustic beam over a large range
- •Test material defects

Other Applications


- Solar concentrators
- Axicon resonators in lasers
- Breakdown in light filaments
- Gradient index, grating axicons
- Illumination

Modeling an Axicon

ZEMAX Application Note

- Axicon defined by single parameter, θ
- $\theta = 0$, plane parallel plate
- Surface sag, z = r.tanθ, r = radial coordinates in lens units

Standard Surface Model	Odd Asphere Surface Model
set roc to small value, several times smaller than smallest radial aperture, conic < -1	■Set roc = infinity, param1 = tanθ
Ex: axicon dia = 100mm, cone angle = 10 ⁰ , use conic = -33.16, roc = .1mm or less, but not zero	Other non-sequential ways to model

